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Article history: Mechanical weeding is an efficient weeding method, which is of considerable significance
Received 5 November 2019 to the paddy field ecosystem. However, traditional mechanical weeding methods can cause
/‘iecel"eccll ';I\r/[e‘”sﬁdzgozrg" 3 January 2020 seedling damages due to the bending phenomenon of the seedling lines. Introducing com-
ceepte arc puter vision and control technology to traditional mechanical weeding methods can help
Available online 18 March 2020 . . . . . .
the system diagnose the bending phenomenon and avoid crushing the seedlings. In this
paper, we propose a deep-learning-based method of seedling line bending diagnosis and
. guidance line extraction. To prove the proposed method effective in the mechanical weed-
Deep learning N . . .
Object detection ing system, we choose the Faster Region-based Convolutional Network (R-CNN) and Single
Guidance line extraction Shot MultiBox Detector (SSD) as the representati\{e model§ of Fhe single—phefse method and
Automatic rice avoidance the two-phase method. With a novel dataset of rice seedling images established, we com-
pare and analyze the confidence and real-time performance of the trained models. The
experimental results show that the Faster R-CNN model is better in terms of accuracy,
yet the SSD model has more advantages in the speed. Comprehensively considering the
system requiring and model performances, the SSD model is a better choice in the auto-
matic rice avoidance system.

Keywords:

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

During the rice growing process, weeding is of great importance to improve the yield and quality of rice. Although the use
of chemical herbicides helps, the damage to the environment is enormous. The demand for environment-friendly,
labor-saving and yield-increasing weeding methods is growing. Mechanical weeding suits that demand well, though it
has problems regarding labor costs and rice injuries.

In practical paddy fields, different degrees of misalignment of seedling rows exist in either mechanical or manual trans-
planting. Consequently, the weeding machine without feedback could inflict rice injury, for it is unable to adjust the weeding
wheels automatically according to the bending. Thus, it is significant for the weeding machine to avoid seedlings automat-
ically. In 2011, Ma’s group studied and summarized the development of domestic and foreign mechanical weeding machines,
especially the development of intelligent weeding robots in the United States and Japan. They proposed that the
development of mechanical weeding technology should be the one that includes bionics, multi-technology integration,
and intelligence, especially computer vision [1].
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ABSTRACT Uniform plant row spacing in a paddy field is a critical requirement for rice seedling
transplanting, as it affects subsequent field management and the crop yield. However, current transplanters
are not able to meet this requirement due to the lack of accurate navigation systems. In this study, a plant
row detection algorithm was developed to serve as a navigation system of a rice transplanter. The algorithm
was based on the convolutional neural network (CNN) to identify and locate rice seedlings from field
images. The agglomerative hierarchical clustering (AHC) was used to group rice seedlings into seedling rows
which were then used to determine the navigation parameters. The accuracies of the navigation parameters
were evaluated using test images. Results showed that the CNN-based algorithm successfully detected
rice seedlings from field images and generated a reference line which was used to determine navigation
parameters (lateral distance and travel angle). Compared with mean absolute errors (MAE) test results,
the CNN-based algorithm resulted in a deviation of 8.5 mm for the lateral distance and 0.50° for the travel
angle, over the six intra-row seedling spacings tested. Relative to the test results, the CNN-based algorithm
had 62% lower error for the lateral distance and 57% lower error for the travel angle when compared to a
classical algorithm. These results demonstrated that the proposed algorithm had reasonably good accuracy
and can be used for the rice transplanter navigation in real-time.

INDEX TERMS Agglomerative hierarchical clustering, convolutional neural network, image, navigation,

rice, seedling, transplanting.

I. INTRODUCTION

Rice is the staple food for more than half of the global
population. Transplanting rice seedlings is one of the most
popular methods of rice production. A critical requirement
for transplanting is to have straight plant rows and uniform
row spacings in rice fields. Uniform seedling row spacing is
favorable to increased rice yields and minimize plant damage
in the subsequent field operations, such as weeding, fertiliza-
tion, spraying, and harvest. Compared to manually driving
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transplanters, automatic transplanters have the potential to
achieve more uniform plant row spacings. However, it is
challenging to navigate a transplanter to autonomously main-
tain a desired plant row spacing. This study addressed this
challenge by developing an algorithm for automatic detection
of rice seedlings for real-time navigation.

The navigation technology based on GPS or computer
vision has been primarily used for agricultural automatic
vehicles. Two-dimensional LiDAR was used to detect corn
plant rows [1], [2]. The main advantage was the short dis-
tance target location but the shape of the plants was not
considered. Moreover, this method may not be suitable for
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Shuangping Huang®, Sihang Wu®, Chao Sun®, Xu Ma®, Yu Jiang”, Long Qi"™*

@ School of Electronic and Information Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
Y College of Engineering, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China

ARTICLE INFO ABSTRACT

Keywords: Automated and precise rice plant localization is crucial for the mechanization of rice production, which can
Intra-row crop detection facilitate targeted spraying, site-specific fertilization, and mechanized weeding etc. Existing approaches adopted
Paddy field thus far have mainly focused on inter-row weed detection or rice seedling row detection. Nevertheless, tech-

Deep localization model niques for intra-row individual rice plant positioning continue to face major challenges induced by the specific

paddy field environments or complex morphology of rice plant. This paper proposed a new deep localization
network for intra-row rice detection at the single plant level in a paddy field. This method designed a two-stage
model. The module in stage 1 identified potential locations containing rice plants in the entire image. The
module in stage 2 predicted the confidence of rice plant identification and refined the corresponding box bounds.
The two-stage processing modules shared a deep backbone network for learning full-image convolutional fea-
tures and are combined into a unified framework to facilitate an end-to-end training. In addition, we constructed
arice plant detection dataset and proposed a task-oriented evaluation method for performance verification of the
algorithm. Experiment results showed the proposed deep model achieved a high localization accuracy of 93.22%
and a high testing speed of 15 fps, verifying the effectiveness and efficiency of the method. Using this method,
we can develop techniques for finer-level agriculture production, such as spraying and weed control, to achieve

healthy and economical rice yields.

1. Introduction

Rice is one of the most important staple crops for large populations
worldwide. However, there remains a severe shortage of rice, mainly
because of pests that reduce the yield and low-level mechanization that
contributes toward low efficiency of the rice production process.
Therefore, it is increasingly demanded for new tools and methods to
meet the objectives of improving the management and productivity of
the rice sector and as well reducing adverse environmental effects
(Huang et al., 2015). Such technologies include targeted spraying and
site-specific fertilization (Carballido et al., 2013; Midtiby et al., 2011),
mechanized weeding (Gobor et al., 2013; Tillett et al., 2008;
Griepentrog et al., 2006), and agricultural machinery navigation (Choi
et al.,, 2015; Rasmussen et al., 2012; Astrand and Baerveldt, 2002;
Perez-Ruiz et al., 2013). To enhance the feasibility and effectiveness of
these tools, it is necessary to acquire the location information of in-
dividual crop plants accurately.

Existing rice localization research work can be roughly categorized
into two classes: non-vision-based and machine-vision based methods.
Herein, non-visual approaches for detecting individual crop plants

* Corresponding author.

include global positioning system (GPS) (Pérez-Ruiz et al., 2012;
Ngrremark et al., 2012; Ngrremark et al., 2008) and various approaches
based on proximity sensors (Bontsema et al., 1991; Cordill and Grift,
2011). The advantage of these methods is that their accuracy and
precision are independent of the visual appearance of the crop, or
shadows. However, these non-vision-based methods are vulnerable to
interruption from other objects or crop flourishing conditions and are
unreliable in the presence of weeds. Therefore, machine vision using
camera sensors is adopted as an important alternative means for de-
tecting crop and acquiring their positional information.

Thus far, some investigations have attempted to develop camera-
based methods for fast and accurate crop location identification with
varying levels of success (Miiter et al., 2014; Nan et al., 2015; Hague
and Tillett, 2001; Nishiwaki et al., 2001; Zhang et al., 2012; Hu et al.,
2013; Astrand, 2005; Aitkenhead et al., 2003). Miiter et al. (2014) used
a wavelet transformation and simple threshold method in HSL color
space to segment a plant from the background. Nan et al. (2015) pro-
posed a modified excess green feature based on thresholding to segment
a plant from the background in RGB color space. These techniques
share a common method for the segmentation of vegetation from the
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Fig. 11. Detection of samples with proposed decision rule: (a) True detections; (b) False detections.

Table 5
Performance of different rice plant detection methods.

Method Recall (%)  Precision (%) AP (%)  Time (s/image)
HOG + SVM 60.39 34.18 35.73 5.1105
YOLO 94.07 70.48 90.20 0.0458
The Proposed (Ours)  94.86 83.88 93.22 0.0654

detection method with two consecutive coarse-to-fine processes, i.e.,
from candidate proposal to refined detection, for improved positioning
performance. The proposed method is equipped with a deep multi-scale
backbone design of ResNet-FPN for more discriminative representations
of rice plants, thus handling the challenges induced by the associated
specific paddy field environments or complex morphological char-
acteristics of canopy or stems. Owing to the unavailability of a public
rice plant detection dataset, we constructed a large rice plant knowl-
edge dataset called FieldRiDet, containing more than 8000 images and
27,000 rice plant instances, which is expected to be useful to the
agricultural community in the future. In addition, we presented a rice
plant position-specific evaluation method that can provide more rea-
sonable goal-oriented evaluations by comprehensively considering the
center distance between the estimated and true squares and the esti-
mated IoU ratio with regard to the ground truth.

Experiment delivered on FieldRiDet shows a significant improve-
ment in the intra-row rice positioning problem at the single plant level.
The results confirmed the superiority of the proposed algorithm over
state-of-the-art methods. Specifically, the proposed method was shown
to achieve a high AP value of 93.22% and a frame rate of 15fps. Thus, it
was a practical rice plant localization method in terms of both accuracy
and speed which may be great conducive to (i) identify a stem-base-
centered square region at single plant level that corresponded to the
protected area for the weeding machinery to reduce crop damage; (ii)
determine the work space for the target sprayer or fertilizer to increase
the cultivation accuracy; and (iii) form a work line for robot navigation
to enhance the agricultural productivity.
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Visual detection of rice rows based on Bayesian decision theory and robust

regression least squares method
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South China Agricultural University, Guangzhou 510642, China)

Abstract: Paddy field management is complicated and labor intensive.
In this study, a novel method was proposed for accurate rice row recognition in paddy field transplanted by

track rice rows.

Correct row detection is important to automatically

machine before the disappearance of row information. Firstly, Bayesian decision theory based on the minimum error was used
to classify the period of collected images into three periods (T1: 0-7 d; T2: 7-28 d; T3: 28-45 d), and resulting in the correct
recognition rate was 97.03%. Moreover, secondary clustering of feature points was proposed, which can solve some problems
such as row breaking and tilting. Then, the robust regression least squares method (RRLSM) for linear fitting was proposed to

fit rice rows to effectively eliminate interference by outliers.

Finally, a credibility analysis of connected region markers was

proposed to evaluate the accuracy of fitting lines. When the threshold of credibility was set at 40%, the correct recognition
rate of fitting lines was 96.32%. The result showed that the method can effectively solve the problems caused by the presence
of duckweed, high-density inter-row weeds, broken rows, tilting (+60°), wind and overlap.

Keywords: rice rows detection, Bayesian decision theory, clustering, RRLSM, credibility analysis, automatic tracking
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1 Introduction

Rice is one of the most important cereal crops worldwide and
is predominantly grown in the Asian monsoon region. Rice
farming occupies 31 million hm? in China, accounting for 20% of
global production and representing a total rice yield of 208.56
million t in 2016!".  With the rapid development of mechanized
rice production, the total mechanization level for rice has reached
79.2%, among which tillage, cultivation and harvest mechanization
levels are 99.31%, 44.45%, and 87.11%, respectively[z]. In recent
years, intelligent rice farming machinery has been developing, like
the Global Navigation Satellite System (GNSS) based unmanned
transplanter and unmanned combine harvester are becoming
increasingly popular. However, paddy field management remains
complicated and labor intensive and the mechanization level for
this link is only 16.84%2, Currently, weed control, fertilization,
and pest control processes for paddy fields mainly adopt
human-operated high-clearance machines, which have a low degree
of automation. A human operator is typically required to
concentrate on not driving over the rice rows; however, this is a
quite difficult and tiring task (Figure 1la). Conversely,
high-clearance paddy management machines navigated by machine
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vision technology can automatically track rice rows, thereby
significantly reducing the labor intensity and minimizing the
damage to crop rows caused by tractor operation®”.  Correct row
detection is crucial to automatic tracking, but machine vision-aided
rice rows recognition technology faces the following challenges.

(1) The paddy field environment is complicated by different
water depths in different fields, severe inverted image and mirror
effects, difficulties to tell color feature between rice and weeds,
duckweeds, cyanobacteria, and the presence of natural wind
leading to the overlap of adjacent rice rows and unclear row
information. At present, the researchers choosing different color
spaces and color features for processing images can effectively
reduce the influence of light intensity changes and weeds on image
segmentation™.  Moreover, Zhang'”! proposed the smallest
univalue segment assimilating nucleus (SUSAN) corner and
improved sequential clustering algorithm, which can detect the rice
row under the noise of cyanobacteria. Kaizu and Imou!'”
developed a dual-spectral camera system that could reduce water
surface noise and clearly detect seedling rows. Furthermore, the
appearance of weeds and crops can be differentiated by leaf shape
and texture features as well!!'14,

(2) Due to the unevenness of the bottom layer of paddy fields,
paddy field machines and implements are forced to change position
frequently!>'%) which would lead to row breaking, tilting, and
overlap. With the parallel and equidistant characteristics of crop
rows, horizontal strip scanning can be used to search for feature
points and fill the feature points into broken row space!l!”'8l.  For
some dry-land crops such as wheat, corn, and soybean, the
horizontal strip scanning method can successfully detect crop rows
in field with high-density weeds or even under varying
circumstances like having different values of soil hardness, light
intensity, and camera yaw; however, the method is hardly able to
detect rows with uneven row spacing caused by the unevenness of
the bottom layer of paddy fields during the mechanized
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(4) Results of crop row recognition before the closing stage

Under different natural environments, 1200 paddy field images
were collected from fields planted by machine, and the number of
images collected for each time period was 71=400, 72=550, and
T3=250. When taking the credibility no less than 40% as a
judgment basis, the average correct recognition rate was 96.32%,
and the recognition rates of 71, 72 and 73 were 98.75%, 99.00%
and 91.20%, respectively. The main reason for the obvious
decrease of recognition rates of 73 was that the adjacent rice rows

1:22.45%; 2:32.65%; 3:27.55%; 4:29.59%; 5:25.51%; 6:24.49%

1:43.88%:; 2:39.8%; 3:48.98%; 4:53.06%; 5:33.67%; 6:44.9%

d.

4 Conclusions

In this study, a novel method for accurate crop-row detection
in paddy fields before the closing stage was proposed. The
proposed method consists of four main processes: rice growth
period classification, feature point extraction, crop row detection
and credibility analysis. Firstly, the Bayesian decision theory
based on the minimum error ratio was used to divide the rice
images into three time periods, and different linear morphological
operations were performed on images to enhance the rice row
information. Then, the vertical projection method was combined
with horizontal strip division to identify the feature points of the
crops. Next, secondary clustering of feature points based on the
shortest distance method was proposed, which effectively improved
the number of correct cluster points, and the rice rows with tilting
angle (within +60°) could also be clustered. ~The RRLSM
effectively eliminated the impact of outliers and accurately fitted
the rice row. Finally, credibility analysis of connected region
markers was proposed to assist the selection of the optimal

crossed seriously in the later period, very close to the closing stage.
As shown in Figure 10, under different circumstances such as
uneven planting, bent rows, the presence of inter-row weeds, the
overlap caused by wind, and the inclination angle of rice less than

60° caused by camera lateral offset, the rice row all can be detected
correctly. Hence, the rice row recognition method proposed in
this paper can meet the requirements of rice row recognition and
location for fields planted by machine in the complex paddy field
environment.

1: 24.49%;

. f.
Figure 10  Overall rice row detection results for complex conditions (a) Uneven planting, (b) bent rows, (c¢) and (d) the presence of
inter-row weeds, (e) the effect of wind, and (f) camera lateral offset

precision fitting lines from the lines with different precision. The
performance of the proposed method was tested using a set of
images, and this experiment results showed that the correct
recognition rate of images was 96.32%. However, the average
computational time from reading one image (1754x1494 pixels) to
credibility analysis was about 0.8 s. The optimization of
processing time will be paid more attention in the future.
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Abstract: Accurate and real-time recognition of rice plants is the premise underlying the
implementation of precise weed control. However, achieving desired results in paddy fields
using the traditional visual method is difficult due to the occlusion of rice leaves and the interference
of weeds. The objective of this study was to develop a novel rice plant recognition sensor based on a
tactile method which acquires tactile information through physical touch. The tactile sensor would
be mounted on the paddy field weeder to provide identification information for the actuator. First,
a flexible gasbag filled with air was developed, where vibration features produced by tactile and
sliding feedback were acquired when this apparatus touched rice plants or weeds, allowing the subtle
vibration data with identification features to be reflected through the voltage value of an air-pressured
sensor mounted inside the gasbag. Second, voltage data were preprocessed by three algorithms
to optimize recognition features, including dimensional feature, dimensionless feature, and fractal
dimension. The three types of features were used to train and test a neural network classifier.
To maximize classification accuracy, an optimum set of features (b (variance), f (kurtosis), h (waveform
factor), 1 (box dimension), and m (Hurst exponent)) were selected using a genetic algorithm. Finally,
the feature-optimized classifier was trained, and the actual performances of the sensor at different
contact positions were tested. Experimental results showed that the recognition rates of the end,
middle, and root of the sensor were 90.67%, 98%, and 96% respectively. A tactile-based method with
intelligence could produce high accuracy for rice plant recognition, as demonstrated in this study.

Keywords: rice; weeds; recognition; tactile; ANN

1. Introduction

Rice is one of the major global food crops and feeds over 65% of Chinese people [1]. One of the
basic questions impeding the growth of crops concerns the competition of rice plants from weeds
in farmland. Weeds in rice fields compete with rice for water, nutrients, and sunlight, resulting in a
detrimental impact on rice yield and quality if not properly controlled [2].

Different operations have been attempted to control weeds, with chemical and mechanical
weeding being widely used in rice fields nowadays. Conventional chemical weeding sprays herbicides
uniformly to cover the total field, regardless of the presence of weeds or not, resulting in high
herbicide costs. Overuse of herbicides in agriculture causes catastrophic environmental pollution
problems, especially in China [3]. Another widely adopted weeding method is mechanical weeding,
which is much more efficient but generally unsatisfactory in terms of weed control performance,
causing differences in the bending of rice rows, leading to contact between weeding hoes and rice
plants and potentially causing rice plant damage [4-6].

In this case, precise identification of rice plants is conducive to control weed growth, because it
provides necessary information for subsequent decision-making and implementation procedures.

Sensors 2020, 20, 5135; d0i:10.3390/s20185135 www.mdpi.com/journal/sensors
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that, in the process of feature selection using genetic algorithm, some features may not be selected,
which reduces the accuracy of selecting the best features to some extent. Therefore, more features
selection methods need to be carried out to optimize features. More recognition models such as
decision tree and support vector machine should be compared, and the best recognition model can be
used by comparing the recognition results. In future studies, the parameters that can better reflect
the tactile signal characteristics should be introduced to further improve the recognition accuracy of
sensor. In addition, appropriate transplanting periods should be selected according to the agronomy
of rice plant growth (bending strength of the stem). The sensor should be waterproofed in the future to
facilitate field measurement.

5. Conclusions

In this study, a rice plant recognition sensor was developed using a tactile method and machine
learning algorithm. Tactile information was acquired from voltage signals of an air-pressure sensor in
a gasbag which touched rice plants. During data processing, three algorithms were used to extract
13 features of tactile voltage signals, and an optimum set of features (variance, kurtosis, waveform factor,
box dimension, and hurst exponent) was selected using a genetic algorithm. A rice plant and weed
classifier was built using a BP neural network. The rice recognition rates for the three testing sets were
95.3%, 95.1%, and 94.9%.

Based on the proposed classifier, an experiment with three case was designed according to the
different positions of the gasbag touching the rice plants and weeds. The best recognition performance
was achieved by the middle of gasbag touching the rice plants, with the recognition rate being as high
as 98%. The second-best recognition performance was achieved by the root of gasbag touching the rice
plants, at 96%. When the end of the gasbag touched the rice plants, the recognition rate was the lowest
that was observed in the experiment, at 90.67%. The dataset in this paper were obtained from a single
rice variety, so the data of the corresponding varieties need to be obtained to train the classifier for the
recognition of other rice varieties. The experiment proved that tactile-based recognition of rice plants
is a promising method.
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Intra-row weed density evaluation in rice field using tactile method
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ARTICLE INFO ABSTRACT

Keywords: Accurate evaluation of weed density is crucial for effective utilization of herbicides, improvement of rice quality,
Tactile and reduction of herbicide dosages. The application of visual methods is disadvantageous because intra-row
Weeds density weeds are blocked by the canopies of adjacent rice plants. Therefore, an innovative tactile sensing method is
23; proposed. A flexible gasbag filled with special microstructures distributed over its surface was developed. The
Rice tactile data of weed density were generated through contact between the microstructures and weeds, and the
Evaluation data were measured using the voltage value of a barometric sensor mounted inside the gasbag. The tactile time

series was processed using fractal theory and Hilbert-Huang transform (HHT), and the discriminating features of
the weed density were acquired. The discriminating features were input into a neural network to train a weed
density classifier to evaluate the weed density. The results of the feasibility experiment demonstrated that the
evaluation accuracies for high-density, medium-density, and low-density weeds were 95.4%, 91.8%, and 87.9%,
respectively, with an average accuracy of 91.7%. The field validation test demonstrated that the visual-based
method had an average classification accuracy of 64.17%, whereas the proposed method had an average ac-

curacy of 77.04%, experimentally demonstrating superior accuracy over the image-based method.

1. Introduction

Intra-row weeds have favorable conditions for growth while
competing with rice plants for water, nutrients, and sunlight in a rice
field ecosystem compared with that of inter-row weeds because they
grow closer to rice plants. Presently, chemical weeding is the main
method used for weeding. However, uniformly spraying pesticides over
large areas for chemical weeding often leads to problems such as
chemical damage to rice, soil and water pollution, and pesticide resi-
dues. Accurate evaluation of intra-row weed density to effectively spray
pesticides on demand can reduce the amount of chemical herbicide
used. The pesticide spraying system can adaptively control the pesticide
dose according to the inter-row weed density using it as the input in-
formation for the pesticide spraying controller. Therefore, it is crucial to
develop a technique that can effectively evaluate the intra-row weed
density in crop fields.

Weed perception and grade classification are the main techniques
used for weed density evaluation. Several researchers have conducted
studies on weed perception (Dadashzadeh et al., 2020; Tshewang et al.,
2016; Feyaerts and Van Gool, 2001; Alonso-Ayuso et al., 2018). Jin et al.
(2012) proposed an image segmentation algorithm to distinguish

* Corresponding author.

between grass weeds and rice crops based on different color features.
Tang et al. (2016) used Gabor wavelet to extract texture features and
designed a three-layer back propagation (BP) neural network to identify
weeds in a field. A few studies in this field have researched the recog-
nition of crops based on their morphological features. Wu et al. (2009a,
b) developed a weed identification method for a cornfield. The images
acquired from the cornfield were processed and the morphological
features of the target object were used as the input vector to a support
vector machine (SVM), and the correct recognition accuracy was 98.3%.

The abovementioned methods for weed detection are based on the
effective expression and accurate extraction of crop colors, textures, and
morphological features. However, the physical appearance of weeds
drastically change with each growing stage. Additionally, in a rice field
ecosystem, the image processing performance is severely affected by
complex paddy backgrounds due to the presence of cyanobacteria or
green algae, variable lighting conditions in the field, and occlusion or
overlapping of rice and weed leaves (Montalvo et al., 2012; Bakker et al.,
2008; Jiang et al., 2015). Hence, these methods are ineffective for weed
perception, and innovative perceptual methods are required for paddy
field environments.

Tactile perception identifies an object through contact sensing,
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types of weeds should be considered to expand the training
samples to improve the universality of the method.

The weed density was divided according to the number of weeds
in the weed statistical area. However, the specific conditions of
the spraying equipment and chemical efficacy were not consid-
ered. The accuracy of weed density division should be further
verified.

Tactile signal acquisition depends upon manual segmentation. In
the future, multi-sensor method will be incorporated to investi-
gate continuous real-time signal acquisition. Additionally, the
excitation response time of the model in the actual operation will
be studied.

(iii)

(iv)
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Overexpression of EiKCS confers
paraquat-resistance in rice (Oryza sativa L.)
by promoting the polyamine pathway

Qiyu Luo,?? © Shu Chen,? Jiazheng Zhu,? Laihua Ye,? Nathan Daniel Hall,”
Suma Basak,® Joseph Scott McElroy®” © and Yong Chen®’

Abstract

BACKGROUND: Paraquat is used widely as one of the bipyridine herbicides, which generates reactive oxygen species to cause
cell death. With a growing number of paraquat-resistant weeds, the mechanism of paraquat-resistance in plants remains
unclear. This research verified the functions of a previously confirmed putative paraquat-resistant gene, EiKCS, from
paraquat-resistant goosegrass by genetic engineering in a single overexpressing line in rice.

RESULTS: Overexpression of EiKCS improved paraquat resistance in transgenic rice (KCSox). Pre-applied (12 h) exogenous sper-
midine (1.5 mmol L"), alleviated the injury of paraquat in rice. Paraquat induced injury in KCSox was 19.57%, which was lower
than 32.22% injury it induced in wild-type (WT) rice. The paraquat-resistant mechanism was through the increased activity of
antioxidant enzymes and the overproduction of endogenous polyamines. The spermine content in KCSox was more than
30 ng mL™", while that in WT rice was less than 5 pg mL~". Quantitative proteomics showed that p-ketoacyl-coenzyme A
(CoA) synthase (51.81 folds) encoded by the transgenic EiKCS gene promoted the synthesis of the proteins involved with the
polyamine pathway. The synthesized putrescine was promoted by the arginine decarboxylase (ADC) pathway. The spermidine
synthase | (1.10-fold) and three eceriferum cofactors (CERs) were responsive to the paraquat stress. We validated putrescine
(C18H20N>0,) spermidine (C5H3,N303), and spermine (C3gH;,N40,) in this study.

CONCLUSION: EiKCS encoding f-ketoacyl-CoA synthase from goosegrass has been shown as an ideal candidate gene for engi-
neering genetically modified organism (GMO) crops, as its overexpression does not only bring paraquat-resistance, but also
have potential benefits without decreasing yield and rice grain quality.

© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.

Keywords: paraquat resistance; polyamines; goosegrass (Eleusine indica L.); GMO crops; rice (Oryza sativa L.)
_______________________________________________________________________________________________________________________]

1 INTRODUCTION weedscience.org). A dominant (or semi-dominant) single gene
was identified to underlie the resistance to paraquat, which was
also identified to be involved in vacuolar sequestration.”™” Goose-
grass (Eleusine indica L.) is one of the most serious invasive weeds
in crop fields in many countries due to its paraquat-resistance.®'°
Polyamines have been identified to be associated with the

Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) is a photo-
system | (PSI) inhibitor used in agriculture and gardening world-
wide, because it rapidly kills weeds and green plants.! In green
plants, paraquat interrupts normal electron flow through PSI by
excepting electrons instead of ferredoxin. This turns paraquat®~
into a free radical, which, in turn, disrupts cell membranes.? This
action of paraquat results in the production of toxic reactive oxy- I

gen species (ROS), including hydrogen pzerOXide (H20,), hypo- * Correspondence to: Y Chen, Department of Crop Cultivation and Farming Sys-
chlorous acid (HCIO), and free radicals O~ which facilitate the tem, South China Agricultural University, Guangzhou, Guangdong 510642,
toxic action of paraquat.3 In addition to its control efficacy of China, E-mail: chenyong@scau.edu.cn; or JS McElroy, Department of Crop, Soil,

and Environmental Sciences, 201 Funchess Hall, Auburn University, Auburn, AL

weeds, paraquat is also one of the most widely used herbicides 36830, USA. E-mail: jsm0010@auburn.edu

in bipyridine herbicides for its timely inactivation upon reaching
the soil.# a Department of Crop Cultivation and Farming System, South China Agricultural

It has been reported that over 30 species of weeds have devel- University, Guangzhou, China

oped resistance to paraquat due to the repeated applications of b Department of Crop, Soil, and Environmental Sciences, Auburn University,
commercial paraquat for decades worldwide (http://www. Auburn, AL, USA

© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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mutants.** These results may explain that polyamines metabo-
lized paraquat based on their chemistry homology and interacted
with the ROS generated by paraquat.

This study provides the latest results from manipulating the
polyamine biosynthetic pathway in cereals using genetic engi-
neering since it was reported 20 years ago.** Molecular formulae
of the dominant benzoylated polyamines in rice were further
derived in this study based on other previous reports.?® The over-
expression of the EiKCS gene, which significantly increased
endogenous polyamines in rice, can be used to improve paraquat
resistance in crops and shows great potential in medical and
industrial applications.

In human medicine, it is known that polyamines treat cancer by
the designing of anticancer agents, and polyamine-regulated
genes are worth being identified in links of carcinogenesis or apo-
ptosis.*® The spermine and spermidine in tumor cells can inhibit
cellular apoptosis.*” The polyamines are synthesized from argi-
nine and proline metabolism, and the polyamine pathway is a
potential target for cancer chemoprevention.***° The gene of
ODC in the polyamine pathway making polyamine synthesis asso-
ciated with cancer polyamine function for the therapeutic inter-
vention.’®>' We propose that EKCS in plants related to
polyamine synthesis may be of medicinal value. For example,
the ectopic expression of a KCS gene from Cardamine graeca in
Brassica oilseeds produces more nervonic acid oils that are bene-
ficial for human and animal health.>

In addition, this study demonstrated that the polyamine meta-
bolic pathway was associated with the enhanced paraquat-
resistance in the KCSox rice, providing new evidence for the inter-
action of the polyamine metabolic pathway with other metabolic
routes.”” The polyamine synthetic pathway in plants showed that
putrescine was synthesized via ODC or ADC.? In Arabidopsis thali-
ana, the lack of an ODC gene in its genome causes the absence of
ODC.?8 In this study, both ADC and OCD were found, but putres-
cine is mainly synthesized through the ADC pathway in the KCSox
rice under paraquat stress.

Moreover, significant expression variations of 15 proteins
involved with polyamine metabolism were detected under para-
quat stress. And the folds of the expression changes were much
higher than those detected by the same quantitative proteomic
methods in a previous study.>® The increased expression of the
proteins well explained the accumulation of polyamines, espe-
cially the Q9SMB1. And the lack of spermine metabolism protein
could infer that spermine accumulation in rice was the main
response to paraquat stress. The transient increase of MDA con-
tent in the KCSox rice could infer that MDA forming was related
to fatty acid degradation affected by the KCS gene. Also, we dis-
covered an association between the EiKCS protein and three
CER cofactors in rice, which expanded the understanding of the
function of CERs in VLCEAs extension in other species.>*>’

By now, 21 KCS genes have been identified in the Arabidopsis
genome, but their substrates are still unknown. It is well recog-
nized that the same kind of KCSs can catalyze the acyl extension
of VLCEAs with different chain lengths, and different KCSs can cat-
alyze substrate of the same structure.”® WSL1 encodes p-ketoacyl
CoA synthetase (KCS) in rice, and the content of VLCEAs C20-C24
decreased significantly in leaf and sheath of the ws/7 mutant.>
Osgl1-1/WSL2 was found to be homologous to CER3 in Arabidop-
sis and GL1 in maize.3® Another KCS gene, WSL4, was found in rice,
whose defective mutation leads to loss of wax crystals, while over-
expression leads to increased wax content.5%®" Meanwhile, the
gene encoding KCS in FAET mutation was identified in Brassica

napus L., which caused accumulation of both C20 and C22 fatty
acids.®? A HVKCS6 gene homologous to AtCER6 (AtKCS6/AtCUTT)
was identified in a barley mutant, which changed sensitivity
responding to water limitation.®* And 33 genes in barley from
the KCS gene family were identified in an annotation map of the
KEGG metabolic pathway, which had up-regulated or down-
regulated trends under drought stress.5*%°

Although the paraquat-tolerant KCSox rice showed similar
effects on proteins involved in photosynthesis and light-
harvesting processes with a mesosulfuron-methyl resistant Alope-
curus aequalis,*® no significant decline was observed in the yield
and quality of the KCSox rice (Tables S6 and S7). The 1000-grain
weight and grain filling rate were not affected by water limitation
as a drought treatment in the field. All these traits give the EiKCS
gene a niche as a candidate gene for engineering GMO crops.
Its overexpression provides crops with enhanced paraquat resis-
tance and other potential benefits without decreasing yield and
quality.

5 CONCLUSIONS

We successfully cloned EiKCS gene from the paraquat-resistant
goosegrass and transformed it into rice plants. Its overexpression
and characterization demonstrated that EiKCS conferred
paraquat-resistance in rice. This study provided useful insight for
further functional studies of genes in GMO that show resistance
to non-selective herbicides.
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Active Disturbance Rejection Control Design for the Hydraulic
Actuator on Weeding Machine

Fuchun Liu'"*, Yang Yang?!, Lei Wang!
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South China University of Technology, Guangzhou 510640, P. R. China
Email: liufc@scut.edu.cn, 18102629514@163.com, 13545291376@163.com

Abstract: A weeding machine can sometimes cause plant damage while working in the paddy field due to the seedling line
bending phenomenon. Thus, we introduce a computer-vision-based automatic seedling avoidance system for the weeding ma-
chine, with a hydraulic cylinder actuator driving the weeding wheels according to the guidance information. This paper aims to
study and design a Linear Active Disturbance Rejection Control (LADRC) controller for the hydraulic system. The proportional
directional valve has a large input dead zone, decreasing the controller’s performance and causing oscillation of the system output
near the setpoint. We designed a nonlinear dead zone compensation module and proposed a residual dead zone compensation
method, taking advantage of the Extended State Observer (ESO). A well-behaved hydraulic position servo system was designed
and tested in Simulink simulation and on an experimental platform based on the compensation method. The results show that the
system performance meets the requirement with approximately no overshoot, response time within 0.7 s, and steady-state error

within 0.7 mm on the experimental platform.

Key Words: weeding machine, hydraulic system, dead zone compensation, LADRC

1 Introduction

Weeds can cause severe losses in the paddy field ecosys-
tem during crop production. With the development of agri-
cultural technology, weeding has become an essential part of
modern agriculture. Therefore, how to efficiently weed and
save the labor required for weeding to improve economic
benefit has become a valuable and study-worthy problem.

Mechanical weeding is an essential substitute for
the chemical weeding method with efficiency and less
pollution[1]. However, its development is restricted for the
mechanical weeding parts can cause plant damage[2].

In a paddy field, there is always misalignment of the
seedling rows. The entire seedling rows could be C-shaped,
regardless of using a transplanter or not, and manually driv-
ing the weeding machine can easily cause seedling damages.
As aresult, it is necessary to design an automatic correction
system for the weeding wheels. We call it alignment con-
trol by real-time controlling the weeding wheels along the
direction perpendicular to the row of rice seedlings within a
proper range.

Researchers have been studying the seedling avoidance
issue. Nakamura’s team investigated the plant damage of
their rice field weeding robots[3]. Romeo et al. designed a
crop-background image segmentation system based on im-
age histogram analysis[4]. Pérez et al. developed a GPS-
based weeding system with alignment control[5], composed
of a path control system for weeding components and a real-
time dynamic differential global satellite positioning sys-
tem (RTK-GPS). Kanagasingham et al. attempted to inte-
grate GNSS, compass, and machine vision into a rice field
weeding robot to achieve fully autonomous navigation for
the weeding operation[6]. Sori et al. used capacitive touch
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sensors to detect the rice plants and an azimuth sensor for
turning detection on their weeding robot[7]. Guerrero et al.
proposed a vision system based on geometry for crop rows
and weeds detection in maize fields[8]. Bah et al. proposed a
crop row detection algorithm named CRowNet for crop row
detection, introducing Deep Learning into the visual naviga-
tion method for the seedling avoidance issue[9].

However, lots of research on the seedling avoidance prob-
lem of weeding machines is carried out from the perspective
of agronomy and mechanics but less work from that of con-
trol.

Fig.1 shows one typical appearance of a weeding machine
with an automatic weedling avoidance system. The weed-
ing wheels are usually heavy and need a hydraulic system to
drive them. Since the purpose of introducing a hydraulic sys-
tem is to move the weeding wheels to avoid rice seedlings,
the solenoid valve is not the best choice due to its low pre-
cision. Instead, the proportional directional valve is a better
option with higher precision than the solenoid valve and a
lower price than the servo valve.

The complicated working environment must be consid-
ered to design a hydraulic displacement servo system. For
example, the reference signal dithering due to the camera
shaking, system parameter changes caused by long-term me-
chanical wear, and soil resistance during weeding operations
can decrease the system performance. Thus, we need a con-
trol algorithm with better robustness. When it is difficult to
build an accurate mathematical model of the hydraulic sys-
tem with nonlinear characteristics, the Active Disturbance
Rejection Control (ADRC) algorithm can suit our applica-
tion just fine.

Mr. Han proposed ADRC in the 1990s[10], and its main
idea is the “total disturbance.” The total disturbance in-
cludes the disturbance signal and the so-called "internal dis-
turbance,” which includes the object’s unmodeled nonlinear
characteristics and high-frequency dynamic characteristics.

However, there are quite a few parameters introduced by
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Design and Experiment of Tactile Sensing Device for
Measuring Rice Curvature

CHEN Xueshen HUANG Zhujian MA Xu QI Long FANG Guijin
( College of Engineering South China Agricultural University Guangzhou 510642 China)

Abstract: In order to solve the technical problem of extracting rice row curvature information in paddy
field environment a tactile sensing method was proposed. According to the mechanical difference and the
physiological height of rice and weeds during the weeding period a kind of tactile beam which was based
on bending sensor was designed. Though the mechanical analysis a dynamic model of the contact
between tactile beam and rice seedlings was established. Combined with the bending strength of rice
seedling the principle of the bending rigidity of the tactile beam was determined. Through building the
tactile beam calibration test bench the functional relationship between the device offset and the pressure
difference of tactile beam was obtained. On this basis based on multi-sensor technology according to
the voltage characteristics generated by the four tactile beams the calculation method of rice seedling
bending was proposed. In order to verify the measurement accuracy and the stability of the device

several field experiments were carried out. The test of speed of travel showed that the acceleration of
travel speed was harmful to the stability. At the speed of 1.5 m/s the average relative error was
5.90 mm and the maximum error was 8.30 mm. The test of rice hole number indicated that the
measurement error became lowest when the number of rice hole was more than 6 and the average error was
2.56 mm. The average error was 6. 17 mm when the number of rice hole was between 1 and 3. The
average error was 4. 36 mm when the number of rice hole was between 4 and 5. The test of water layer
thickness indicated that there was no significant correlation between measurement errors and water layer
thickness and the lateral offset of neighboring rice seedlings can be controlled within 14 mm. The
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Design and test of control system for rice mechanical weeding and
seedling—avoiding control

CHEN Xue-shen, HUANG Zhu-jian, MA Xu,QI Long, FANG Gui—jin
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract: To enable the weeding component to avoid the seedling on the operation path and reduce the
seedling injury rate of machinery weeding, an automatic seedling avoidance control system based on machine
vision and hydraulic servo control is proposed in this paper. First, by the way of overshoot, the centroid
image coordinate position of the seedling canopy is extracted. Second, through pinhole imaging principle
conversion, the seedling ground coordinate position and the distance between the weeding component and
the center line of rice row are obtained. Third, a hydraulic control systems model of parallel four connecting
rods of organizations is built, and the mapping relations between deviation control and hydraulic stem is
acquired. Finally, based on PID algorithm, a proportional valve hydraulic system mathematical model is

built. The Matlab/Simulink simulation shows that the model has a steady—state response time of 0.28 s and a
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Present status and intelligent development prospects of mechanical
weeding technology and equipment for rice

1 1 2
QI Long , LIU Chuang , JIANG Yu
(1 College of Engineering, South China Agricultural University, Guangzhou 510642, China; 2 Modern Educational
Technology Center, South China Agricultural University, Guangzhou 510642, China)

Abstract: Weed is one of the main causes for decline of rice yield and quality. The application of chemical
herbicide has brought many negative problems, such as crop toxicity, weed resistance and environmental
pollution, etc. Mechanical weeding, as an environmentally-friendly weeding method, can effectively replace
chemical weeding and alleviate the harm caused by herbicide. Aiming at the technical difficulties of mechanical
weeding among rice plants, the research status of mechanical weeding devices among plants were systematically
introduced from the perspective of root difference characteristics of weed seedlings. The types and
characteristics of new mechanical weeding technology were introduced, and the unique features and advantages
of several new mechanical weeding equipments for rice were summarized. It is pointed out that intelligent
weeding technology with high precision and high weed localization function will be the inevitable development

trend of mechanical weeding technology for rice in future.

Key words: agricultural machinery; rice; intra-row weeding; intelligent weeding; research status; development

trend
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Design and experiment of pneumatic paddy
intra-row weeding device

JIANG Yuu, QI Longl, GONG Haol, LIU Chuangl, TAO Ming], HU Xiaolus, CHEN Qinling4
(1 College of Engineering, South China Agricultural University, Guangzhou 510642, China; 2 Modern Educational
Technology Center, South China Agricultural University, Guangzhou 510642, China; 3 China Rural
Technology Development Center, Beijing 100045, China; 4 Guangdong Academy of
Agricultural Sciences, Guangzhou 510640, China)

Abstract: [Objective] In order to solve the problem of low automation and high difficulty of mechanical
intra-row weeding in paddy field, a pneumatic paddy intra-row weeding device was developed based on the
recognition and positioning technology of machine vision. [Method] The mechanism of pneumatic intra-row
weeding device was designed by applying the principle of mechanical design, discrete element dynamics (DEM)
simulation method and field test. Firstly, the structure of pneumatic intra-row weeding device was designed, and

the geometric parameters of the mechanism were calculated using the kinematic equations. The feasibility of the
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